

FISA DISCIPLINEI Syllabus

1. Information about the program

1.1. University	West University of Timisoara
1.2. Faculty	PHYSICS
1.3. Department	PHYSICS
1.4. Study direction	PHYSICS
1.5. Study cycle	MASTER
1.6. Study program / qualification	METODE AVANSATE DE CERCETARE IN FIZICA/ ADVANCED
	RESEARCH METHODS IN PHYSICS

2. Subject matter information

2.1. Subject matter			Synthesis and Characterization of Nano and Micromaterials ARMP 2305				
2.2. Subject teacher			CS	2 Dr. Maria Poienar			
2.3. Subject application / laboratory)	ions 1	teacher (seminar	CS	2 Dr. Maria Poienar			
2.4. Study year	2	2.5. Semester	1	2.6. Assessment type	E	2.7. Subject type	DS, DOP

3. Study time distribution

28 hours
hours
nours
20
34
30
6
4
-

3.7. Total number of personal study hour	94
3.8. Total number of hours in semester	150
3.9. Number of credits	6

4. Preconditions (where appropriate)

4.1. curriculum	Chemistry
	Solid-State Physics
	Electricity and Magnetism
	Numerical data analysis

4.2. Competences	•	Basic knowledge in solid state physics and chemistry
	•	Basic knowledge in numerical data analysis

5. Conditions (where appropiate)

5.3 for course	• Laptop + projector, notebooks
5.4 for laboratory	 Laptop + projector, notebooks Laboratory equipments.

6. Objectives of the discipline - expected learning outcomes to the formation of which the completion and promotion of the discipline contribute

		7
Knowledge	•	to know the advanced notions in the field of Physics, which involves a critical understanding of theories and principles
	•	to know the language specific to the field
	•	to know physical phenomena and interpret them by formulating hypotheses and operationalizing key concepts and the appropriate use of laboratory equipment
	•	to know the constructive and operating principles of the equipment for obtaining and characterizing materials and to explain how to use it
Skills	•	to compare the theoretical results provided by the specialized literature with those of an experiment carried out within a professional project
	•	To describe physical systems using specific theories and tools (experimental and theoretical models, algorithms, schemes, etc.)
	•	to apply the principles and laws of physics in solving theoretical or practical problems, under conditions of qualified assistance
	•	to characterize the specific properties of some materials taking into account the field in which they are used
	•	to use experimental techniques for obtaining and characterizing materials
	•	to identify the most appropriate methods to develop new materials with well-defined properties
Responsibility autonomy	and •	to critically analyze a specialized report, scientific communication with a medium degree of difficulty in the field of physics
	•	to autonomously use information sources and resources for communication
		and assisted professional training (Internet portals, specialized software
		applications, databases, online courses, etc.) both in Romanian and in a
		language of international circulation

7. Table of content

Teaching methods	Observations
exposition	2 hours
-	2 hours
exposition	2 hours
	exposition

Bibliography

- [1] B. D. Cullity, C. D. Graham, Introduction To Magnetic Materials, IEEE Press, Wiley, 2009
- [2] HANDBOOK OF HYDROTHERMAL TECHNOLOGY A Technology for Crystal Growth and Materials Processing by K. Byrappa, Masahiro Yoshimura
- [3] Nicola Spaldin, Magnetic Materials, Fundamentals And Applications, Cambridge University Press, 2011
- [4] SOLID STATE CHEMISTRY, An introduction, L.E. Smart and A.A. Moore, Taylor and Francis

7.2 Labs	Teaching methods	Observations
Laboratory 1. Presentation of the synthesis	exposition, experiment	4 hours
protocols in air: reactives, crucibles, analytical		
balance, furnaces.		
Laboratory 2. Presentation of the synthesis	exposition, experiment	2 hours
protocols in controlled atmosphere: reactives,	•	
crucibles, tubes, analytical balance, furnaces.		
Laboratory 3. X-Ray diffraction experiments.	exposition, experiment	4 hours
Laboratory 4. Identification of phases from X-	exposition, data analysis	2 hours
Ray diffraction patterns.	•	

Laboratory 5. Structural phase transitions analysis	exposition, data analysis	2 hours
Laboratory 6. Rietveld refinement of X-Ray diffraction pattern. Practical case: transition metal oxides. Quantitative phase analysis	exposition, data analysis	2 hours
Laboratory 7. Investigation of the samples morphology by microscopy	exposition, experiment	2 hours
Laboratory 8. The data treatment for the magnetic and electric properties.	exposition, data analysis	2 hours
Laboratory 9. The influence of the external parameters (temperature, magnetic field or pressure) upon the physical properties.	Exposition, data analysis	4 hours
Laboratory 10. How to write a scientific article (research paper): general structure of a research paper; steps to organizing an article; examples; discussion.	exposition, dialog	4 hours

Bibliography

- [1] "FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis", by J. Rodríguez-Carvajal.
- [2] J. Rodríguez-Carvajal, Study of MicroStructural Effects by Powder Diffraction Using the Program, 2003, Materials Science;
- [3] Barbara J. Hoogenboom, and Robert C. Manske, How to write a scientific article, Int J Sports Phys Ther. 2012 Oct; 7(5): 512–517.
- [4] How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra, *J. Phys. Chem. Lett.* 2018, 9, 23, 6814–6817

8. Relation between subject content and the expectations of employers

9. Assesment

Activity type	9.1 Assesment criteria	9.2 Assesment method	9.3 Percent in final mark
9.4 Course	 the scientific level of the presentation will be evaluated; the clarity in presentation the data; the level of knowledge will be evaluated based on the given answers; the ability of explaining the theoretical aspects. 	Summative assessment - Oral examination: power point presentation in English based on a subject from the course.	50%
9.5. Labs	- activity during the experiments and interpretation of data - answers and discussions during the seminars - ability to use the programs (FullProf, Origin, Vesta etc)	Formative assessment: - continuous in the course of the semester	50%

Fulfillment of 50% of the abovementioned criteria.

Completion date: 17.09.2025

Subject teacher's signature:

CS2 Dr. Maria POIENAR

Subject applications teacher's signature: CS2 Dr. Maria POIENAR

Department Director' Signature:

Associate Professor Dr. Nicoleta STEFU,