

COURSE CONTENT

1. Information about the program

1.1 Organization	West University of Timisoara		
1.2 Faculty	Physics and Mathematics		
1.3 Department	Physics		
1.4 Field of study	Physics		
1.5 Level	Master		
	Advanced research methods in physics / according to COR:		
1.6 Study program/qualification	physicist (211101); teacher (233001); research assistant		
	(248102); analyst (213101);		

2. Course information

2.1 Title			Advanced methods in computational physics ARMP2304					
2.2 Course instruct	or		dr. Sergiu BUSUIOC					
2.3 Laboratory/Sen	Laboratory/Seminar instructor			. Se	rgiu BUSUIOC			
2.4 Year of study	II	2.5 Semester		1	2.6 Type of evaluation E 2.7 Course type DOP			

3. Study time distribution (teaching hours per semester)

3.1 No. of hours/week	3	In which:	1	3.3	2
		3.2 course		seminar/laboratory	
3.4 Total hours in the educational	42	In which:	14	3.6	28
plan		3.5 course		seminar/laboratory	
Time distribution:					hours
Study of lecture notes, bibliography or notes					
Additional documentation in the library, electronic specialty platforms/ field					
Seminar / laboratory preparations, homework, portfolio and essays					
Tutoring					
Exams					
Other activities					
	1				

3.7 Total hours of individual study	108
3.8 Total hours in a semester	150
3.9 Number of credits	6

4. Prerequisites (if it is the case)

•	-	•	
4.1 curriculum	•	Algorithms and programming	
	•	Introduction in programming	
	•	Computational physics (undergraduate level)	
4.2 skills	General skills: the ability to gain general basic knowledge; proper		
	of computer science terminology; basic programming skills		

Website: www.uvt.ro

5. Requirements (if it is the case)

5.1 for the course	Laptop with a working compiler for C, C++, Fortran
5.2 for the seminar/laboratory	etc.

6. Course objectives - expected learning outcomes that contribute to the training and passing of the course

Knowledge	After successful completion of this course students can represent problems of various areas of application simplified, by means of mathematical models, describe and simulate numerically
Abilities	The ability to use modelling software to solve numerical problems in the field of physics
Responsibility and autonomy	 Development of a multi- and interdisciplinary way of thinking Efficient usage of information sources and communication resources both in Romanian and in a foreign language (English)

7. Content

7.1	Course	Teaching methods	Observations
1.	Monte Carlo methods and statistical physics.	lecture, conversation, exemplification	Bibliographic resources [1]-[3]
2.	Monte Carlo importance sampling. Simple sampling. Biased sampling (2h)		Bibliographic resources [1]-[3]
3.	Monte Carlo Translational moves. Orientational moves.		Bibliographic resources [1]-[3]
4.	MC methods and random numbers		Bibliographic resources [1]-[3]
5.	Molecular dynamics. Basic steps in bulling a MD program. Forces computation and integration of motion equations		Bibliographic resources [1]-[3]
6.	Molecular dynamics. Integration of the Newton's equation of motion. Verlet algorithm and predictor-corrector scheme. (2h)		Bibliographic resource [4]
7.	MD. Integration of the Newton's equation of motion. Leapfrog scheme and Velocity-Stormer-Verlet method. (2h)		Bibliographic resource [5]

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro

8.	Computational fluid dynamics. Basic steps for numerical methods (mathematical model, numerical grid, discretization approaches)	Bibliographic resource [5]
9.	Finite difference methods in fluid dynamics. Approximation of first and second derivative of PDEs. Boundary conditions	Bibliographic resource [5]
	Finite Volume Methods in fluid dynamics. Approximations of surface and volume integrals Fluid dynamics. Lattice	Bibliographic resource [5] Bibliographic resource [6]
	Boltzmann method	

Minimal bibliography:

- 1. K. Binder, D.W. Heermann Monte Carlo Simulation in Statistical Physics. An introduction. Springer, 2002
- 2. D. Frenkel, B. Smit Understanding Molecular Simulation. From Algorithms to Applications, Academic Press, 2002
- 3. M. E. J Newman, G. T. Barkema Monte Carlo Methods in Statistical Physics, Claredon Press, Oxford, 1998
- 4. M. Griebel, S. Knapek, G. Zumbusch Numerical Simulation in Molecular Dynamics. Numerics, Algorithms, Parallelization, Applications, Springer 2007
- 5. J. H. Ferziger, M. Peric, R. L. Street Computational Methods for Fluid Dynamics, Springer 2020
- 6. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M., 2017. The lattice Boltzmann method. Springer International Publishing 10 (978-3).

7.2 Seminar / laboratory	Teaching methods		Observations		
Monte Carlo methods and	Conversation and	individual	The students, using the lecture		
statistical physics – Random	work under the guida	nce of the	note, will discuss with the		
walk; Non-reversal random	lecturer		lecturer about the algorithms of		
walk; Self-avoiding random walk			the numerical methods. Using a		
Monte Carlo methods. Ising			language program (C, C++,		
model			Fortran etc.) the students will		
Monte Carlo simulation of a			write programs based on the		
Lennard Jones system			algorithms.		
Molecular Dynamics. Diffusion.					
Static and dynamic properties of					
the Lennard Jones fluid.					
Molecular Dynamics simplified					
simulation of the orbit of					
Halley's Comet.					
Computational fluid dynamics.					
1D convection-diffusion					
equation with Dirichlet					

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro

boundary conditions at both	
ends	
Computational fluid dynamics.	
Numerical diffusion	
Bibliography: lecture notes	

8. Corroborating the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and representative employers in the field related to the program

The computation physics course comes as a complement for the theoretical and experimental physics courses offering a future physicist an increased ability to understand the physical phenomena and to offer a numerical solution for solving specific physics problems.

9. Evaluation

Activity	9.1 Evaluation	9.2 Evaluation methods	9.3			
	criteria		Percentage of			
			the final mark			
9.4 Course	The assimilation	Individual project (based	100%			
	level of the gained	on topics discussed during				
	knowledge	lectures + tutorials).				
9.5 Seminar / laboratory	Capacity of solving					
	specific problems					
	and implementing					
	an algorithm.					
9.6 Minimum performance standards						
Presenting an algorithm with its associated program.						

Data completării 15.09.2025 Titular de disciplină Dr. Sergiu BUSUIOC

Data avizării în departament

Director de departament Conf. Univ. Dr. Nicoleta ȘTEFU

Website: www.uvt.ro