SUBJECT CONTENT ## 1. Informations about program | 1.1 Institution | West University of Timisoara | | |--|---|--| | 1.2 Faculty | Faculty of Physics | | | 1.3 Department | Physics Department | | | 1.4 Domain for university master studies | Exact science | | | 1.5 Level of study | Master | | | | Advanced research methods in physics | | | | Code COR - 211101 physicist. | | | 1.6 Study directions/qualification | Code COR - 211103 research assistant in physics. | | | | Code COR - 211105 research assistant in physics-chemistry. | | | | Code COR - 211107 research assistant in technological physics | | ### 2. Informations about discipline | 2.1 Subject matter | | | Qua | ntum fields ARMP 120 |)6 | | | |---------------------|---|--------------|------|------------------------|----|----------------------|--------| | 2.2 Course | | | Con | f. dr. Cosmin Crucean | | | | | 2.3 Seminar | | | Lect | . dr. Victor Ambrus | | | | | 2.4 Discipline code | e | | ARN | MP1206 | | | | | 2.5 Year of study | I | 2.6 Semester | I | 2.7 Type of evaluation | Е | 2.8 Subject category | DS/DOP | ## 3. The total estimated time (hours of teaching activities on semester) | 2 | from which course | 2 | seminar | 2 | laboratory | | |---|--------------------------|---|--|---|---|---| | 56 | from which course | 28 | seminar | 28 | laboratory | | | | | | | | | ore | | y and | other notes | | | | | 40 | | tc. | | | | | | 40 | | Preparation of seminars / laboratory, homework, reports, portofolio and essay | | | | | | 35 | | Tutoring | | | | | | | | Exams | | | | | | 4 | | | | | | | | | | 3.4 Total hours of individual study 119 | | | | | | | | 3.5 Total hours on semester ¹ 175 | | | | | | | | 3.6 Credits 7 | | | | | | | | | 56 y and tc. work, 119 | y and other notes tc. work, reports, portofolio and | y and other notes tc. work, reports, portofolio and essay 119 175 | 56 from which course 28 seminar y and other notes tc. work, reports, portofolio and essay 119 175 | y and other notes tc. work, reports, portofolio and essay | 56 from which course 28 seminar 28 laboratory y and other notes tc. work, reports, portofolio and essay 119 175 | Numărul total de ore nu trebuie să depășească valoarea (Număr credite) x 25 ore ## 4. Preconditions (where appropriate) | 4.1 of curriculum | • | Basic knowledge of fundamental principles of quantum mechanics and | |--------------------|---|--| | | | electrodynamics | | 4.2 of competences | • | Ability of solving problems of quantum mechanics and electrodynamics | ## 5. Condition (where appropriate) | 5.1of the course | | |-----------------------|--| | 5.2 of the seminars | | | 5.3 of the laboratory | | #### 6. Specific competences | 0. 5 | pectric competences | |--------------------------|--| | tences | Basic knowledge (fundamental concepts of quantum field theory). Deep understanding (of basic notions, of physical). Physical interpretation of the calculations results and their applications. Capacity of analyze and synthesize (realization of synthesis and comparisons). | | Professional competences | Capacity to plan and organize theoretical applications. Bibliography investigation. Knowledge of foreign languages (English). Competencies to develop and refine existing theories using calculations. Study currently accepted theories in the field of theoretical physics. Skills to perform mathematical calculations in an attempt to prove abstract theories. Develop theories based on observations and calculations. | | Transversal competences | The ability to filter information and establish its veracity. Active learning capacity. Ability to analyze, synthesize and make decisions responsibly. Ethics and integrity. Solving complex problems. | # 7. Objectives (reieşind din grila competențelor specifice acumulate) | 7.1 Main objectiv | Acquiring basic knowledge about quantum field theory Understanding of the fundamental principles of the theory of free fields | |-------------------------|--| | 7.2 Specific objectives | Basic notions needed to construct the theory of free fields | | | Developing the skills needed to solve problems | ## 8. Table of contents | 8.1 Course | Teaching methods | Observations | |---|--|--------------| | 1. Representations of the Lorentz group | Interacting teaching using the blackbord | 3 hours | | 2. Representations of the Poincare group; | Interacting teaching using the blackbord | 3 hours | |--|--|---------| | mass and the spin as Poincare invariants | | | | 3. Lagrangeean field theories; Noether | Interacting teaching using the blackbord | 2 hours | | theorem | | | | 4.The principle of the second | Interacting teaching using the blackbord | 2 hours | | quantization. Construction of the Fock | | | | space, creation and annihilation operators | | | | 5. Field operators | Interacting teaching using the blackbord | 2 hours | | 6. Free Klein-Gordon field | Interacting teaching using the blackbord | 2 hours | | 7. The quantization of free Klein-Gordon | Interacting teaching using the blackbord | 2 hours | | field | | | | 8. The free Proca field; Proca equation | Interacting teaching using the blackbord | 2 hours | | and the conserved quantities | | | | 9. Free electromagnetic field | Interacting teaching using the blackbord | 2 hours | | 10. The quantization of the | Interacting teaching using the blackbord | 2 hours | | electromagnetic field in the Coulomb | | | | gauge | | | | 11. The free Dirac field; The Dirac | Interacting teaching using the blackbord | 2 hours | | equation | | | | 12. The quantization of the Dirac field | Interacting teaching using the blackbord | 2 hours | | 13. The Dirac field with zero mass | Interacting teaching using the blackbord | 2 hours | ### References - 1.J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, (Mc Grew Hill, New York, 1965) - 2. S. Weinberg, The Quantum Theory of Fields, (Cambridge Univ. Press, Cambridge 1995) - 3. G. W. Mackey, induced Representation of groups and Quantum Mechanics, Benjamin, New York, 1968) - 4. B. Thaller, The Dirac Equation (Springer Verlag, Berlin Heidelberg, 1992). - 5. V. Novacu, Teoria cuántica a campurilor (Editura Tehnica, Bucuresti 1984) | 8.2 Seminar | Teaching methods | Observations | |--|--|--------------| | 1. Time evolution of the quantum systems | Interacting teaching using the blackbord | 2 hours | | 2. Temporal evolution pictures. Heisenberg picture and the interaction picture | Interacting teaching using the blackbord | 2 hours | | 3. Second quantization for femions and bosons. | Interacting teaching using the blackbord | 2 hours | | 4. Conserved quantities for the Klein-Gordon field | Interacting teaching using the blackbord | 2 hours | | 5. Conserved quantities for the electromagnetic field | Interacting teaching using the blackbord | 2 hours | | 6. Conserved quantities for the Dirac field | Interacting teaching using the blackbord | 2 hours | | 7. Polarization vectors for the Proca field and photon field | Interacting teaching using the blackbord | 2 hours | | 8. The method of Green functions | Interacting teaching using the blackbord | 2 hours | | 9. The Green functions for the Klein-Gordon field | Interacting teaching using the blackbord | 2 hours | | 10. The Green functions for the electromagnetic field | Interacting teaching using the blackbord | 2 hours | | 11. Properties of the Dirac spinors | Interacting teaching using the blackbord | 2 hours | | 12. Spinors in the spin basis and helicity basis | Interacting teaching using the blackbord | 2 hours | | 13. Propagators for the Proca and Dirac | Interacting teaching using the blackbord | 4 hours | |---|--|--------------| | fields | | | | 8.3 Laboratory | Teaching methods | Observations | | | | | #### References - 1.J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, (Mc Grew Hill, New York, 1965) - 2. S. Weinberg, The Quantum Theory of Fields, (Cambridge Univ. Press, Cambridge 1995) - 3. G. W. Mackey, induced Representation of groups and Quantum Mechanics, Benjamin, New York, 1968) - 4. B. Thaller, The Dirac Equation (Springer Verlag, Berlin Heidelberg, 1992). - 5. V. Novacu, Teoria cuántica a campurilor (Editura Tehnica, Bucuresti 1984) #### 9. Evaluation | Activity | Evaluation criteria | Evaluation methods | Percentage of final mark | | | |--|---------------------|--------------------|---|--|--| | 9.1 Course | final evaluation | written | 50% with the observation that 25% is the evaluation during the semester | | | | 9.2 Seminar | Problems , homework | written | 50% with the observation that 25% is the evaluation during the semester | | | | 9.3 Laboratory | | | | | | | 9.4 Minimum performnce standards | | | | | | | correct formulation of the proposed subject without demonstrations | | | | | | Data completării: 31.01.2025 Semnatura titularului de curs: Conf.dr. Cosmin CRUCEAN Semnătura director departament: Conf.dr. Nicoleta Stefu