FISA DISCIPLINEI Syllabus 1. Information about the program | 1.1. University | West University of Timisoara | |------------------------------------|---| | 1.2. Faculty | PHYSICS | | 1.3. Department | PHYSICS | | 1.4. Study direction | PHYSICS | | 1.5. Study cycle | MASTER | | 1.6. Study program / qualification | Advanced research methods in physics / according to COR: | | | Analyst - 251201; Research assistant in physics - 211103; | | | Physicist - 211101; Teacher - 233002; | ### 2. Subject matter information | 2.1. Subject matter | | | Statistical methods for data analyzing | | | | | |--|---|------------------|--|----------------------|---|------------------------|----| | 2.2. Subject teacher | | | Pau | lescu Eugenia | | | | | 2.3. Subject applications teacher (seminar | | Paulescu Eugenia | | | | | | | / laboratory) | | | | | | | | | 2.4. Study year | 1 | 2.5. Semester | 2 | 2.6. Assessment type | E | 2.7. Discipline regime | DO | ### 3. Study time distribution | 3.1. Nr. of hours/week | 4 | In which: 3.2 course | 2 | 3.3. seminar/laboratory | 2 | |---|---|----------------------|---|-------------------------|-------| | 3.4. Total hours in educational plan 56 In which: 3.5 course 28 3.6. seminar/laboratory | | | | | 28 | | Time distribution: | | | | | hours | | Study after lecture notes, bibliography or notes | | | | 56 | | | Additional documentation in the library, electronic specialty platforms/ field | | | | 14 | | | Seminar / laboratory preparations, homework, portfolio and essays | | | | 14 | | | Tutoring | | | | | | | Exams | | | | 6 | | | Other activities | | | | 4 | | | 3.7. Total nun | aber of personal study hour | 94 | |----------------|-----------------------------|-----| | 3.8. Total nun | nber of hours in semester | 150 | | 3.9. Number of | of credits | 6 | # **4.** Preconditions (where appropriate) | 4.1. Curriculum | Mathematics | |------------------|---------------------------| | 4.2. Competences | Elementary knowledge of R | ### **5.** Conditions (where appropiate) | 5.1 for course | Individual access to computer | |---------------------|-------------------------------| | 5.2 for seminar/lab | Individual access to computer | 6. Subject objectives - expected learning outcomes to the formation due to the course and promotion of the discipline | promotion of | the discipline | |-----------------------------|---| | Knowledge | to know the advanced notions in the field of Physics, which involves a critical understanding of theories and principles to know the working formulas for calculations with physical quantities using properly the principles and laws of physics to know the language specific to the field | | Skills | to deduce the working formulas for calculations with physical quantities, using appropriately the principles and laws of physics To describe physical systems using specific theories and tools (experimental and theoretical models, algorithms, schemes, etc.) to apply the principles and laws of physics in solving theoretical or practical problems, under conditions of qualified assistance To use high-level mathematical skills to solve conceptual and quantitative problems in physics | | Responsibility and autonomy | to critically analyze a specialized report, scientific communication with a medium degree of difficulty in the field of physics to autonomously use information sources and resources for communication and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation | #### 7. Table of content | 7.1 Course | Teaching methods | Observations | |----------------------------------|---------------------|------------------------------------| | 1. Elements of Probability | Interactive lecture | Statistical Methods. Lecture notes | | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 2. Permutations and Combinations | Interactive lecture | Statistical Methods. Lecture notes | | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 3. Random Variables and | Interactive lecture | Statistical Methods. Lecture notes | | Distributions | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 4. Properties of Distributions | Interactive lecture | Statistical Methods. Lecture notes | |--|---------------------|------------------------------------| | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 5. Probabitity Generating | Interactive lecture | Statistical Methods. Lecture notes | | Functions. | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 6. Important Discrete Distributions | Interactive lecture | Statistical Methods. Lecture notes | | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 7. Important Continuous | Interactive lecture | Statistical Methods. Lecture notes | | Distributions | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 8. Joint Distributions | Interactive lecture | Statistical Methods. Lecture notes | | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 9. Descriptive Statistics | Interactive lecture | Statistical Methods. Lecture notes | | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 10. Parameter Estimations | Interactive lecture | Statistical Methods. Lecture notes | | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 11. Hypothesis Testing | Interactive lecture | Statistical Methods. Lecture notes | | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 12. Regression | Interactive lecture | Statistical Methods. Lecture notes | | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 13. Analysis of Variance | Interactive lecture | Statistical Methods. Lecture notes | | | | http://www.physics.uvt.ro/ | | | | ~eugeniat/ metode_statistice/ | | 14. Recapitulation of knowledge | | | | 7.2 Saminan | | | | 7.2 Seminar: 1. Conditional Probability | | | | 2. Bayes' Formula | | | | 3. Variance and Standard Deviation | | | | 4. Moments and Central Moments | | | | 5. Moment Generating Functions | | | | о. | The Poisson random variables | |----|---------------------------------------| | 7. | Distributions Arising from the Normal | - 8. Covariance and Correlation - 9. The Central Limit Theorem - 10. Confidence Intervals - 11. Paired t-Test - 12. Multiple Linear Regression - 13. ANOVA - 14. Checking knowledge - 1.D. C. Montgomery, G.C. Runger, Applied Statistics and Probability for Engineers, Ediția a cincea, John Wiley and Sons, 2011. - 2. K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and Engineering, Third Edition, Cambridge 2006. - 3. M.J. Crawley, Statistics: An Introduction Using R. 2nd Edition. John Wiley, New York, 2015. - 4. Sheldon M. Ross, INTRODUCTION TO PROBABILITY AND STATISTICS FOR ENGINEERS AND SCIENTISTS, Fifth Edition, Elsevier. 2014 - 5. E. Paulescu, Metode statistice, Notite de curs si seminar. http://www.physics.uvt.ro/~eugeniat #### 8. Relation between subject content and the expectations of employers 9. Assesment | Activity type | 9.1 Assesment criteria | 9.2 Assesment method | 9.3 Percent in final mark | |--|---|--|---------------------------| | 9.4 Lecture | The evaluation has a continuous component that involves solving 10 homework problem sheets and a final component that consists of a written evaluation. | Written test with 10 questions/problems | 70% | | 9.5 Seminar/labs 9.6 Minimum performa | The mark 10 will be awarded to students who demonstrate the ability to apply and clearly explain all the required material. | Continuous assessment 10 homework problem sheets | 30% | The mark 5 will be obtained for showing a basic undersanding of the coure concepts. # MINISTERUL EDUCAȚIEI ȘI CERCETĂRII FACULTATEA DE FIZICĂ | Completion date: 23.01.2025 | Comp | letion | date: | 23.01 | .2025 | |-----------------------------|------|--------|-------|-------|-------| |-----------------------------|------|--------|-------|-------|-------| Subject teacher's signature: Eugenia Paulescu Subject applications teacher's signature: Department Director' Signature: Conf. dr. Nicoleta Stefu