

FIȘA DISCIPLINEI / SYLLABUS

1. Program information

1.1 University	WEST UNIVERSITY OF TIMIŞOARA
1.2 Faculty	PHYSICS
1.3 Department	PHYSICS
1.4 Study direction	PHYSICS
1.5 Study cycle	MASTER
	ADVANCED RESEARCH METHODS IN PHYSICS/
1.6 Study program / Qualification	according to COR:
1.0 Study program? Quantication	Analyst (251201); Research assistant in physics (211103); Physicist
	(211101); Teacher (233002); Education reviewer (235106)

2. Subject matter information

2.1 Subject matter			X Ray Characterization of Materials ARMP1203				
2.2 Course teacher			CS2 Dr. Maria Poienar				
2.3 Seminar teacher		CS2 Dr. Maria Poienar					
2.4 Lab teacher		-					
2.5 Study year	1	2.6 Semester	2	2.7 Assessment type	Е	2.8 Subject type	Ob.

3. Study time distribution (hours per semester of didactical activities)

3.1. Number of hours per week	4	course	2	seminar	2	laboratory	-
3.2. Number of hours per semester	56	course	28	seminar	28	laboratory	-
3.3. Time distribution:							hrs.
Study using lecture notes, bibliography or notes						24	
Additional documentation in the library, electronic specialty platforms/ field						34	
Seminar / laboratory preparations, homework, portfolio and essays						26	
Tutoring						6	
Exams						4	
Other activities							-

3.4 Total number of personal study hrs.	94	
3.5 Total number of hours in semester ¹	150	
3.6 Number of credits	6	

¹ Total number of hours shall not surpass the value (Number of credits) x 27 hrs.

4. Preconditions (where appropriate)

4.1 curriculum	Complements of Theoretical Physics	
	• Complements of Solid State Physics	
	Complements of Atom and Molecule Physics	
4.2 skills	Basic knowledge in solid state physics and chemistry	
	Basic knowledge in numerical data analysis	

5. Conditions (where appropriate)

5.1 course	•	laptop + projector, notebooks
5.2 seminar	•	PCs with database for phases identification,
		Crystallography Open Database
	•	software FullProf Suite, VESTA,
	•	OrientExpress
5.3 laboratory	•	laboratory equipment: • X-Ray difractometer

6. Specific skills gained

	reserve and the second
Professional skills	 Basic knowledge related to materials science. Basic knowledge related to the characterization of material physical properties. Identification of laboratory experimental techniques suitable for the study of physical properties (structural properties) characteristics to nano and micromaterials. The ability to use certain software to model the crystal structure. Bibliography investigation.
Transversal skills	 Effective use of information sources and communication resources. Basic skills necessary to communicate (presentation, dialogue, report) Capacity to analyze and synthesize. Scientific communication in a foreign language (English)

7. Course Objectives

7.1 Main objective	• Students to identify the specific concepts and phenomena in a given context and to apply these knowledges in the analysis and interpretation of experimental data.
7.2 Specific objectives	 Students to define the specific notions of this discipline and to describe the phenomena Students to use correct laboratory equipment to perform measurements. Students to process experimental data using software packages and correctly interpret the experimental results. Students to develop their organizational capacity Students to develop their spirit of teamwork. Students to appreciate and cultivate a scientific environment based on values and quality

8. Contents

8.1 Course	Teaching methods	Observations
1.Properties and nature of X-rays. Sources of X-rays	exposition	2 hours
2. Interaction of X-Ray with matter	exposition	2 hours
3.Instrumentation used for X-ray Diffraction	exposition	2 hours
4. Geometry of Crystals	exposition	2 hours
5. Scattering and Diffraction	exposition	2 hours
6. Diffraction from Polycrystalline Samples	exposition	2 hours
7. Width of diffraction maxima	exposition	2 hours
8. Lattice vibrations and the Debye Waller factor	exposition	2 hours
9.Laue Diffraction Method	exposition	3 hours
10. Microstructural Study based on X Ray data	exposition	2 hours
11. Reciprocal Lattice and Integrated Intensities of Crystals	exposition	2 hours
12. Interpreting the Results	exposition	2 hours
13. X Ray diffraction on thin films	exposition	2 hours
14. Invited lecture (Recognised international researcher/professor)	exposition	2 hours

Recommended Bibliography

- 1. J. Als-Nielsen, D. McMorrow, "Elements of modern x-ray physics", 2nd edition, A John Wiley & Sons, Ltd Publication, 2011.
- 2. B. D. Cullity, "Elements of x-ray diffraction", Addison-Wesley Publishing Company Inc. 1978.
- 3.V. Pecharsky, P. Zavalij, "Fundamentals of powder diffraction and structural characterization of material", Springer, Berlin, 2005

4. E. Lifshin (Editor), "X-ray characterization of materials", Wiley-VCH, New York 1999

	ziisiiii (zuivei), ,,ii i iuj eiiurueveiizuvieii ei iiiuveiiuis ,	T	Ī
825	eminar	Teaching methods	Observations
		·	
1.	Production and properties of X-rays	exposition, experiment	2 hours
2.	The X-Ray Diffraction: Equipment and radiologic	exposition, dialog	2 hours
secur	ity		
3.	Phase analysis and the use of PDF database: single	exposition, data analysis	2 hours
and n	nultiple phases		
4.	Elements of crystallography	exposition, data analysis	2 hours
5.	Crystal structure analysis	exposition, data analysis	2 hours
6.	Interpretation of Powder Diffraction Patterns	exposition, data analysis	2 hours
7.	Rietveld method- Theoretical background	exposition, data analysis	2 hours
8.	Rietveld refinement- FullProf program	exposition, data analysis	2 hours
9.	Exercises: determination of unit cell parameters for	Exposition, data analysis	2 hours
differ	ent materials.		
10.	Study of micro-structural effects	exposition, data analysis	2 hours
11.	The determination of crystal structure from powder	exposition, data analysis	2 hours
diffra	ction data		
12.	Laue crystal orientation	exposition, data analysis	2 hours
13.	X-Ray diffraction on thin films	exposition, data analysis	2 hours
14.	Studies from research scientific articles: examples.	exposition, dialog	2 hours

Bibliography:

- 1.C. Whiston, X-Ray Methods, John Wiley and Sons, 1996
- 2. R. A. Young, The Rietveld Method, Oxford University Press, 1993
- 3. B. D. Cullity, Elements of X-Ray Diffraction, 2-nd edition. (Addison-Wesley, Reading, Mass., 1978)
- 4. V. Pecharsky, P. Zavalij: Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, Berlin, 2005)
- 5. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction + FullProf, Physica B: Condensed Matter 192 (1–2), Pages 55–6
- 6. P. W. Stephens, Phenomenological Model of Anisotropic Peak Broadening in Powder Diffraction J.

8.3 Laboratory	Teaching methods	Observations
-		

4 Corroboration of the contents with the expectation of the epistemic community, professional associations and representative employers from the program's corresponding domain

5 Evaluation

Activity type	Assessment criteria	Assessment methods	Percent in final mark		
10.1 Course	knowledge of the theoretical notions	final evaluation (written)	50%		
10.1 Course	homework, reports, essays	in the course of the semester	10%		
	final answers at seminar activities	in the course of the semester (orally)	25%		
10.2 Seminar	activity during seminars	in the course of the semester	15%		
10.3					
Laboratory					
10.4 Minimum performance standards					
Fulfillment of 50% of the abovementioned criteria.					

Completion date: Signature of the course instructor: Signature of the seminar/laboratory instructor: CS2 Dr Maria Poienar CS2 Dr Maria Poienar

Signature of the department director: Conf. Dr. Nicoleta Stefu