FIȘA DISCIPLINEI / SYLLABUS ## 1. Program information | 1.1 University | WEST UNIVERSITY OF TIMIŞOARA | |-----------------------------------|---| | 1.2 Faculty | PHYSICS | | 1.3 Department | PHYSICS | | 1.4 Study direction | PHYSICS | | 1.5 Study cycle | MASTER | | | ADVANCED RESEARCH METHODS IN PHYSICS/ | | 1.6 Study program / Qualification | according to COR: | | 1.0 Study program? Quantication | Analyst (251201); Research assistant in physics (211103); Physicist | | | (211101); Teacher (233002); Education reviewer (235106) | ### 2. Subject matter information | 2.1 Subject matter | | | X Ray Characterization of Materials ARMP1203 | | | | | |---------------------|---|-----------------------|--|---------------------|---|------------------|-----| | 2.2 Course teacher | | | CS2 Dr. Maria Poienar | | | | | | 2.3 Seminar teacher | | CS2 Dr. Maria Poienar | | | | | | | 2.4 Lab teacher | | - | | | | | | | 2.5 Study year | 1 | 2.6 Semester | 2 | 2.7 Assessment type | Е | 2.8 Subject type | Ob. | ### 3. Study time distribution (hours per semester of didactical activities) | 3.1. Number of hours per week | 4 | course | 2 | seminar | 2 | laboratory | - | |--|----|--------|----|---------|----|------------|------| | 3.2. Number of hours per semester | 56 | course | 28 | seminar | 28 | laboratory | - | | 3.3. Time distribution: | | | | | | | hrs. | | Study using lecture notes, bibliography or notes | | | | | | 24 | | | Additional documentation in the library, electronic specialty platforms/ field | | | | | | 34 | | | Seminar / laboratory preparations, homework, portfolio and essays | | | | | | 26 | | | Tutoring | | | | | | 6 | | | Exams | | | | | | 4 | | | Other activities | | | | | | | - | | 3.4 Total number of personal study hrs. | 94 | | |--|-----|--| | 3.5 Total number of hours in semester ¹ | 150 | | | 3.6 Number of credits | 6 | | ¹ Total number of hours shall not surpass the value (Number of credits) x 27 hrs. ## 4. Preconditions (where appropriate) | 4.1 curriculum | Complements of Theoretical Physics | | |----------------|--|--| | | • Complements of Solid State Physics | | | | Complements of Atom and Molecule Physics | | | 4.2 skills | Basic knowledge in solid state physics and chemistry | | | | Basic knowledge in numerical data analysis | | ## 5. Conditions (where appropriate) | 5.1 course | • | laptop + projector, notebooks | |----------------|---|--| | 5.2 seminar | • | PCs with database for phases identification, | | | | Crystallography Open Database | | | • | software FullProf Suite, VESTA, | | | • | OrientExpress | | 5.3 laboratory | • | laboratory equipment: • X-Ray difractometer | ## 6. Specific skills gained | | reserve and the second | |-----------------------|---| | Professional skills | Basic knowledge related to materials science. Basic knowledge related to the characterization of material physical properties. Identification of laboratory experimental techniques suitable for the study of physical properties (structural properties) characteristics to nano and micromaterials. The ability to use certain software to model the crystal structure. Bibliography investigation. | | Transversal
skills | Effective use of information sources and communication resources. Basic skills necessary to communicate (presentation, dialogue, report) Capacity to analyze and synthesize. Scientific communication in a foreign language (English) | ## 7. Course Objectives | 7.1 Main objective | • Students to identify the specific concepts and phenomena in a given context and to apply these knowledges in the analysis and interpretation of experimental data. | |-------------------------|---| | 7.2 Specific objectives | Students to define the specific notions of this discipline and to describe the phenomena Students to use correct laboratory equipment to perform measurements. Students to process experimental data using software packages and correctly interpret the experimental results. Students to develop their organizational capacity Students to develop their spirit of teamwork. Students to appreciate and cultivate a scientific environment based on values and quality | #### 8. Contents | 8.1 Course | Teaching methods | Observations | |---|------------------|--------------| | 1.Properties and nature of X-rays. Sources of X-rays | exposition | 2 hours | | 2. Interaction of X-Ray with matter | exposition | 2 hours | | 3.Instrumentation used for X-ray Diffraction | exposition | 2 hours | | 4. Geometry of Crystals | exposition | 2 hours | | 5. Scattering and Diffraction | exposition | 2 hours | | 6. Diffraction from Polycrystalline Samples | exposition | 2 hours | | 7. Width of diffraction maxima | exposition | 2 hours | | 8. Lattice vibrations and the Debye Waller factor | exposition | 2 hours | | 9.Laue Diffraction Method | exposition | 3 hours | | 10. Microstructural Study based on X Ray data | exposition | 2 hours | | 11. Reciprocal Lattice and Integrated Intensities of Crystals | exposition | 2 hours | | 12. Interpreting the Results | exposition | 2 hours | | 13. X Ray diffraction on thin films | exposition | 2 hours | | 14. Invited lecture (Recognised international researcher/professor) | exposition | 2 hours | #### **Recommended Bibliography** - 1. J. Als-Nielsen, D. McMorrow, "Elements of modern x-ray physics", 2nd edition, A John Wiley & Sons, Ltd Publication, 2011. - 2. B. D. Cullity, "Elements of x-ray diffraction", Addison-Wesley Publishing Company Inc. 1978. - 3.V. Pecharsky, P. Zavalij, "Fundamentals of powder diffraction and structural characterization of material", Springer, Berlin, 2005 4. E. Lifshin (Editor), "X-ray characterization of materials", Wiley-VCH, New York 1999 | | ziisiiii (zuivei), ,,ii i iuj eiiurueveiizuvieii ei iiiuveiiuis , | T | Ī | |--------|---|---------------------------|--------------| | 825 | eminar | Teaching methods | Observations | | | | · | | | 1. | Production and properties of X-rays | exposition, experiment | 2 hours | | 2. | The X-Ray Diffraction: Equipment and radiologic | exposition, dialog | 2 hours | | secur | ity | | | | 3. | Phase analysis and the use of PDF database: single | exposition, data analysis | 2 hours | | and n | nultiple phases | | | | 4. | Elements of crystallography | exposition, data analysis | 2 hours | | 5. | Crystal structure analysis | exposition, data analysis | 2 hours | | 6. | Interpretation of Powder Diffraction Patterns | exposition, data analysis | 2 hours | | 7. | Rietveld method- Theoretical background | exposition, data analysis | 2 hours | | 8. | Rietveld refinement- FullProf program | exposition, data analysis | 2 hours | | 9. | Exercises: determination of unit cell parameters for | Exposition, data analysis | 2 hours | | differ | ent materials. | | | | 10. | Study of micro-structural effects | exposition, data analysis | 2 hours | | 11. | The determination of crystal structure from powder | exposition, data analysis | 2 hours | | diffra | ction data | | | | 12. | Laue crystal orientation | exposition, data analysis | 2 hours | | 13. | X-Ray diffraction on thin films | exposition, data analysis | 2 hours | | 14. | Studies from research scientific articles: examples. | exposition, dialog | 2 hours | #### Bibliography: - 1.C. Whiston, X-Ray Methods, John Wiley and Sons, 1996 - 2. R. A. Young, The Rietveld Method, Oxford University Press, 1993 - 3. B. D. Cullity, Elements of X-Ray Diffraction, 2-nd edition. (Addison-Wesley, Reading, Mass., 1978) - 4. V. Pecharsky, P. Zavalij: Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, Berlin, 2005) - 5. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction + FullProf, Physica B: Condensed Matter 192 (1–2), Pages 55–6 - 6. P. W. Stephens, Phenomenological Model of Anisotropic Peak Broadening in Powder Diffraction J. | 8.3 Laboratory | Teaching methods | Observations | |----------------|------------------|--------------| | - | | | # 4 Corroboration of the contents with the expectation of the epistemic community, professional associations and representative employers from the program's corresponding domain #### 5 Evaluation | Activity type | Assessment criteria | Assessment methods | Percent in final mark | | | |--|--------------------------------------|--|-----------------------|--|--| | 10.1 Course | knowledge of the theoretical notions | final evaluation (written) | 50% | | | | 10.1 Course | homework, reports, essays | in the course of the semester | 10% | | | | | final answers at seminar activities | in the course of the semester (orally) | 25% | | | | 10.2 Seminar | activity during seminars | in the course of the semester | 15% | | | | 10.3 | | | | | | | Laboratory | | | | | | | 10.4 Minimum performance standards | | | | | | | Fulfillment of 50% of the abovementioned criteria. | | | | | | Completion date: Signature of the course instructor: Signature of the seminar/laboratory instructor: CS2 Dr Maria Poienar CS2 Dr Maria Poienar Signature of the department director: Conf. Dr. Nicoleta Stefu