

COURSE SHEET

1. Information on the study programme

1.1. Higher education institution	West University of Timisoara
1.2. Faculty	Physics
1.3. Department	Physics
1.4. Study cycle	Master
1.5. Study programme / Qualification	Astrophysics, elementary particles and computational physics / according to COR: Physicist (211101); Research assistant in physics (248102); Teacher (232201); Education reviewer (235204)

2. Information on the course

2.1. Course title			Gravitation and Cosmology ARMP1202					
2.2. Lecture instruc	tor		Nis	Nistor Nicolaevici				
2.3. Seminar / laboratory instructor		Nistor Nicolaevici						
2.4. Study year	1	2.5. Semester	II	2.6. Assesment type	Е	2.7.Course type	DS, DOP	

3. Estimated study time (number of hours per semester)

		,		
3.1. Attendance hours per week	3	out of which: 2 lecture	seminar	1
3.2. Attendance hours per semester	42	out of which: 28 lecture	seminar	14
3.3 Distribution of the allocated amount of time			hours	
Study of literature, course handbooks and personal notes			36	
Supplementary documentation at library or using electronic repositories			36	
Preparing for homework			11	
Exams				
Tutoring				
				•

3.4. Total number of hours per semester	83
3.5. Total number of hours in semester	125
3.5. Number of credits (ECTS)	5

4. Prerequisites

Curriculum	Analytical mechanics; Electrodynamics; Statistical Physics

5. Conditions (where appropiate)

5.1 for course	projector, blackboard
5.2 for seminar/lab	blackboard

6. Subject objectives - expected learning outcomes to the formation due to the course and promotion of the discipline

promotion of the disc	91
Knowledge	 to know the advanced notions in the field of Physics, which involves a critical understanding of theories and principles to know the working formulas for calculations with physical quantities using properly the principles and laws of physics to know the language specific to the field
Skills	 to deduce the working formulas for calculations with physical quantities, using appropriately the principles and laws of physics to describe physical systems using specific theories and tools (experimental and theoretical models, algorithms, schemes, etc.) to apply the principles and laws of physics in solving theoretical or practical problems, under conditions of qualified assistance to use high-level mathematical skills to solve conceptual and quantitative problems in physics
Responsibility and autonomy	 to critically analyze a specialized report, scientific communication with a medium degree of difficulty in the field of physics to autonomously use information sources and resources for communication and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation

7. Content

Course	Teaching methods	References
1. Historical introduction. Review of Special Relativity. Gravity as a manifestation of the geometry of space-time - intuitive exposition	PowerPoint presentations	[1] Chap. 1 [2] Chaps. 1, 2 [3] Chap. 1
2. Mathematical description of curved spaces. Manifolds. Vectors and		[1] Chaps. 2 - 4
tensors. Metric. Covariant derivative. Curvature. Geodesics	Blackboard calculations	[2] Secs. 4.1 - 4.9, Chap. 6

[1] Chaps. 7, 8 [2] Chap. 7.1
[3] Chap. 3
[1] Chap. 9
[2] Chaps. 8, 9 [3] Secs. 6.1 - 6.3
[3] Secs. 0.1 - 0.3
[1] Chap. 11 [2] Chaps. 11.9 [3] Chap. 6.4
[2] Chap. 14.1 [3] Chap. 7.1 [4] Chaps. 1, 2
[1] Chap. 14 [2] Sec. 14.2
[4] Chap. 4
[5] Chap. 3
[1] Chap. 14.10 [2] Secs. 14.4 -
14.6
[5] Secs. 7.2, 7.3
[1] Chap. 15
[3] Secs. 8.1, 8.2 [4] Chap. 5
[5] Chap. 6 [3] Sec. 7.1.4
[4] Chap. 9 [5] Chap. 8
[5] Chap. 6
[3] Sec. 8.5
[4] Chap. 10 [5] Chap. 9
[2] Secs. 15.6, 15.7
[3] Sec. 8.4 [4] Chap. 12

deuterium bottleneck. Barion-antibarion asymmetry	[5] Chap. 10
13. Inflation and the very early universe. The flatness and horizon problems. The inflationary scenario. The solution to the problems. Inflation and particle physics	[3] Secs. 9.1, 9.2 [4] Chap. 13 [5] Chap. 11
14. Measuring the cosmological parameters. Standard candles, the supernova data and the accelerating universe. CMB anisotropy and evidence for a flat universe. The concordant ΛCDM model	[3] Secs. 9.3-9.5 [4] Chap. 15 [5] Secs. 7.4, 7.5

8. Recommended literature

- [1] M. P. Hobson, G. Efstathiou and A.Lasenby, General Relativity: An Introduction (Cambridge, 2006)
- [2] S. Weinberg, Gravitation and Cosmology (Wiley, 1972)
- [3] T. P. Cheng, Relativity, Gravitation and Cosmology (Oxford, 2005)
- [4] A. Liddle, An Introduction to Modern Cosmology (Wiley, 2003)
- [5] B. Ryden, Introduction to Cosmology (Addison-Wesley, 2002)

9. Evaluation

> E (unaution	
Activity	Weight in the final mark
Lectures (regular attendance)	20%
Homework	30%
End paper	50%
Minimum mark for passing	5

Completion date: Head of Discipline: Head of Department:

04.02.2025 Lecturer Nistor Nicolaevici Associate Professor Nicoleta Stefu