COURSE SHEET 1. Information on the study programme | 1.1. Higher education institution | West University of Timisoara | |--------------------------------------|--| | 1.2. Faculty | Physics | | 1.3. Department | Physics | | 1.4. Study cycle | Master | | 1.5. Study programme / Qualification | Astrophysics, elementary particles and computational physics / according to COR: Physicist (211101); Research assistant in physics (248102); Teacher (232201); Education reviewer (235204) | ## 2. Information on the course | 2.1. Course title | | | Gravitation and Cosmology ARMP1202 | | | | | | |--------------------------------------|-----|--------------------|------------------------------------|---------------------|---|-----------------|---------|--| | 2.2. Lecture instruc | tor | | Nis | Nistor Nicolaevici | | | | | | 2.3. Seminar / laboratory instructor | | Nistor Nicolaevici | | | | | | | | 2.4. Study year | 1 | 2.5. Semester | II | 2.6. Assesment type | Е | 2.7.Course type | DS, DOP | | 3. Estimated study time (number of hours per semester) | | | , | | | |---|----|--------------------------|---------|----| | 3.1. Attendance hours per week | 3 | out of which: 2 lecture | seminar | 1 | | 3.2. Attendance hours per semester | 42 | out of which: 28 lecture | seminar | 14 | | 3.3 Distribution of the allocated amount of time | | | hours | | | Study of literature, course handbooks and personal notes | | | 36 | | | Supplementary documentation at library or using electronic repositories | | | 36 | | | Preparing for homework | | | 11 | | | Exams | | | | | | Tutoring | | | | | | | | | | • | | 3.4. Total number of hours per semester | 83 | |---|-----| | 3.5. Total number of hours in semester | 125 | | 3.5. Number of credits (ECTS) | 5 | # 4. Prerequisites | Curriculum | Analytical mechanics; Electrodynamics; Statistical Physics | |------------|--| | | | ## **5.** Conditions (where appropiate) | 5.1 for course | projector, blackboard | |---------------------|-----------------------| | 5.2 for seminar/lab | blackboard | 6. Subject objectives - expected learning outcomes to the formation due to the course and promotion of the discipline | promotion of the disc | 91 | |-----------------------------|---| | Knowledge | to know the advanced notions in the field of Physics, which involves a critical understanding of theories and principles to know the working formulas for calculations with physical quantities using properly the principles and laws of physics to know the language specific to the field | | Skills | to deduce the working formulas for calculations with physical quantities, using appropriately the principles and laws of physics to describe physical systems using specific theories and tools (experimental and theoretical models, algorithms, schemes, etc.) to apply the principles and laws of physics in solving theoretical or practical problems, under conditions of qualified assistance to use high-level mathematical skills to solve conceptual and quantitative problems in physics | | Responsibility and autonomy | to critically analyze a specialized report, scientific communication with a medium degree of difficulty in the field of physics to autonomously use information sources and resources for communication and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation | ## 7. Content | Course | Teaching
methods | References | |---|--------------------------|---| | 1. Historical introduction. Review of Special Relativity. Gravity as a manifestation of the geometry of space-time - intuitive exposition | PowerPoint presentations | [1] Chap. 1
[2] Chaps. 1, 2
[3] Chap. 1 | | 2. Mathematical description of curved spaces. Manifolds. Vectors and | | [1] Chaps. 2 - 4 | | tensors. Metric. Covariant derivative. Curvature. Geodesics | Blackboard calculations | [2] Secs. 4.1 - 4.9,
Chap. 6 | | [1] Chaps. 7, 8
[2] Chap. 7.1 | |--| | [3] Chap. 3 | | | | [1] Chap. 9 | | [2] Chaps. 8, 9
[3] Secs. 6.1 - 6.3 | | [3] Secs. 0.1 - 0.3 | | [1] Chap. 11
[2] Chaps. 11.9
[3] Chap. 6.4 | | [2] Chap. 14.1
[3] Chap. 7.1
[4] Chaps. 1, 2 | | [1] Chap. 14
[2] Sec. 14.2 | | [4] Chap. 4 | | [5] Chap. 3 | | [1] Chap. 14.10
[2] Secs. 14.4 - | | 14.6 | | [5] Secs. 7.2, 7.3 | | [1] Chap. 15 | | [3] Secs. 8.1, 8.2
[4] Chap. 5 | | [5] Chap. 6
[3] Sec. 7.1.4 | | [4] Chap. 9
[5] Chap. 8 | | [5] Chap. 6 | | [3] Sec. 8.5 | | [4] Chap. 10
[5] Chap. 9 | | [2] Secs. 15.6, 15.7 | | [3] Sec. 8.4
[4] Chap. 12 | | | | deuterium bottleneck. Barion-antibarion asymmetry | [5] Chap. 10 | |---|---| | 13. Inflation and the very early universe. The flatness and horizon problems. The inflationary scenario. The solution to the problems. Inflation and particle physics | [3] Secs. 9.1, 9.2
[4] Chap. 13
[5] Chap. 11 | | 14. Measuring the cosmological parameters. Standard candles, the supernova data and the accelerating universe. CMB anisotropy and evidence for a flat universe. The concordant ΛCDM model | [3] Secs. 9.3-9.5
[4] Chap. 15
[5] Secs. 7.4, 7.5 | ### 8. Recommended literature - [1] M. P. Hobson, G. Efstathiou and A.Lasenby, General Relativity: An Introduction (Cambridge, 2006) - [2] S. Weinberg, Gravitation and Cosmology (Wiley, 1972) - [3] T. P. Cheng, Relativity, Gravitation and Cosmology (Oxford, 2005) - [4] A. Liddle, An Introduction to Modern Cosmology (Wiley, 2003) - [5] B. Ryden, Introduction to Cosmology (Addison-Wesley, 2002) #### 9. Evaluation | > E (unaution | | |-------------------------------|--------------------------| | Activity | Weight in the final mark | | Lectures (regular attendance) | 20% | | Homework | 30% | | End paper | 50% | | Minimum mark for passing | 5 | Completion date: Head of Discipline: Head of Department: 04.02.2025 Lecturer Nistor Nicolaevici Associate Professor Nicoleta Stefu