FIȘA DISCIPLINEI / SYLLABUS # 1. Program information | 1.1 University | WEST UNIVERSITY OF TIMIŞOARA | |-----------------------------------|--| | 1.2 Faculty | PHYSICS | | 1.3 Department | PHYSICS | | 1.4 Study direction | PHYSICS | | 1.5 Study cycle | MASTER | | 1.6 Study program / Qualification | ADVANCED RESEARCH METHODS IN PHYSICS | | | according to COR: | | | physicist (211101), physics researcher (211102), research assistant in physics | | | (211103), researcher in physics-chemistry (211104), research assistant in | | | physics-chemistry (211105), researcher in technological physics (211106), | | | research assistant in technological physics (211107) | # 2. Subject matter information | 2.1 Subject title | | | Crystal Growth Methods | | A | RMP1201 | | |---------------------|---|--------------|--------------------------------|---------------------|---|------------------|--------| | 2.2 Course teacher | | | C.S.III Dr. Gabriel Raoul BUŞE | | | | | | 2.3 Seminar teacher | | | C.S.III Dr. Gabriel Raoul Bl | JŞE | | | | | 2.4 Study year | 1 | 2.5 Semester | 2 | 2.6 Assessment type | Ε | 2.7 Subject type | DS/DOP | ## 3. Study time distribution (hours per semester of didactical activities) | 3.1 Number of hours per week | 3 | of which: 3.2 course | 2 | 3.3 seminar/lab | 1 | |--|----|----------------------|----|-----------------|------| | 3.4 Number of hours per semester | 42 | of which: 3.5 course | 28 | 3.6 seminar/lab | 14 | | Distribution of allotted time: | | | | | hrs. | | Study using lecture notes, bibliography or notes | | | | | 22 | | Additional documentation in the library, electronic specialty platforms/ field | | | | | 22 | | Seminar / laboratory preparations, homework, portfolio and essays | | | | | 21 | | Tutoring | | | | | 6 | | Exams | | | | | 4 | | Other activities | | | | | 8 | | | | | | | • | | 3.7 Total no. hrs. of individual study | 83 | |--|-----| | 3.8 Total no. hrs. per semester | 125 | | 3.9 No. of credits | 5 | Website: www.uvt.ro ### 4. Preconditions | 4.1 of curriculum | Complements of Atom and Molecule Physics | |-------------------|---| | 4.1 of curriculum | Complements of Solid-State Physics | | 4.2 of skills | scientific communication (presentation, dialogue) in English language | ### 5. Conditions | J. Conditions | | |----------------------|--| | | expositions are frontal, dialogue is conducted within collective group discussions; students must make use of the institutional (@e-uvt) address in electronic communication and, if requested to | | 5.1 for course | do so, use online educational platforms (Google Meet). | | | Specifically, the platform used for the dissemination of support materials is Google Classroom; | | | laptop + projector, notebooks. | | | tasks are assigned either individually of in group, under | | | the supervision of the instructor; | | | students must make use of the institutional (@e-uvt) | | 5.2 for seminar/lab | address in electronic communication and, if requested to | | 3.2 for serimary tas | do so, use online educational platforms (Google Meet). | | | Specifically, the platform used for the dissemination of | | | support materials is Google Classroom; | | | laptop + projector, notebooks, experimental installations. | # 6. Subject objectives – Expected learning outcomes of the instruction, which contribute to the completion and promotion of the subject | Knowledge | Familiarization with the main techniques for crystal growth and the physical phenomena behind them Basic theoretical knowledge of the general problematics and methods of crystal growth Knowledge related to the culture and history of the topic | |-----------------------------|--| | Abilities | Capacity of solving characteristic problems for real physical systems and model building by idealization of real systems Development of skills and experimental abilities in operating specific device and crystal growth installations Capacity to analyze and synthesize (adaptability to new situation, realization of synthesis and comparisons, correlations) | | Responsibility and autonomy | Development of critical evaluations and auto-evaluation Capacity of communication inside a group Concern for a continuous improvement of process quality | Telephone No.: +40-(0)256-592.300 (310) e-mail address: secretariat@e-uvt.ro Website: www.uvt.ro ### 7. Contents | 8.1 Course | Teaching methods | Observations | |---|------------------|--------------------| | 1. Phase transformation. Solidification | exposition | 2 hours [1] p.67 | | 2. Crystal growth process | | 2 hours [1] p.171 | | 3. Crystal growth methods (from solutions, from | | 2 hours [4], [1] | | melt, etc.) | | p.419 | | 4. Verneuil method | | 2 hours [4] | | 5. Czochralski method | | 2 hours [6] p.49 | | 6. Bridgman method. General consideration | | 2 hours [6] p.6 | | 7. Bridgman method. System without isolation | | 2 hours [1] p.117, | | 7. Bridginan metriod. System without isolution | | p.125 | | 8. Bridgman method. System with isolation | | 2 hours [1] p.131 | | 9. Bulk crystal growth (HEM, GSM methods) | | 2 hours [6] p.78 | | 10. Shaped crystal growth. Stepanov method | | 2 hours [6] p.19 | | 11. Shaped crystal growth. EFG method | | 2 hours [6] p.20 | | 12. Growth stability for EFG method | | 2 hours [6] p.24 | | 13. Shaped crystal growth. LHPG and NCS methods | | 2 hours [4] | | 14. Melting zone method | | 2 hours [6] p.70 | ## Bibliography: - [1] I. Nicoară Tehnologia materialelor cristaline, Tipografia Univ. de Vest, 1998. - [2] W. Kurz, D. Fischer Fundamentals of solidification, Trans Tech Publications, 1985. - [3] Y.A. Tatarchenko Shaped Crystal Growth, Kluwer Academic Publishers, 1993. - [4] D.T.J. Hurle (editor) Handbook of crystal growth, Elsevier, 1993. - [5] J. Villain, A. Pimpinelli Physique de la croissance cristalline, Alea Saclez, 1995. - [6] D. Vizman, I. Nicoară Curs de tehnologia materialelor cristaline, Ed. Eurobit, 2008. | 8.2 Seminar / lab | Teaching methods | Observations | |---|------------------------------------|------------------| | 1. Crystal growth | exposition, dialogue | 1 hour [1] p.11 | | 2. Temperature. Thermocouple. Pyrometer | exposition, experiment | 2 hours [1] p.77 | | 3. Thermocouple gauges | | 1 hour, notes | | 4. Determination of temperature gradient for Zn crystal growth by Bridgman method | exposition, experiment/ simulation | 2 hours [1] | | 5. Growth of Zn crystals by Bridgman method | | 2 hours [1] | | 6. Growth of BaF ₂ crystals by Bridgman method | | 2 hours [1] | | 7. Growth of CaF ₂ crystals by EFG method | | 1 hour [1] | | 8. Growth of sapphire crystals by EFG method | | 2 hours [1] | | 9. Growth stability for EFG method | | 1 hour [1] | | Additional Bibliography: | | _ | [7] I. Nicoară, D. Nicoară – Cristale artificiale, Editura Mirton, 1999. # 8. Corroboration of the contents with the expectation of the epistemic community, professional associations and representative employers from the program's corresponding domain The students gain skills useful for jobs in research or industry, specifically relating to crystal growth processes, metallurgy, study of growth processes, operation and physical engineering of crystal growth installations. ### 9. Evaluation | Activity type | 10.1 Assessment | 10.2 Assessment methods | 10.3 Percent in | | |--|---------------------|----------------------------------|-----------------|--| | | criteria | | final mark | | | | knowledge of the | final evaluation (written) | 35% | | | | theoretical notions | milai evaluation (written) | 3370 | | | 10.4 Course | homework, | | | | | | reports, essays, | in the course of the semester | 15% | | | | translations | | | | | | final answers at | in the course of the semester | 10% | | | | seminar activities | (orally) | 10% | | | 10.5 Seminar / lab | 10 tests during the | in the course of the semester | 35% | | | 10.5 Seminar / Tab | seminars | (written) | 33/0 | | | | activity during | in the course of the semester | 5% | | | | seminars | in the course of the semester 5% | | | | 10.6 Minimum performance standards | | | | | | Fulfillment of 50% of the abovementioned criteria. | | | | | Completion date: Course instructor, 25.01.2025 C.S.III Dr. Gabriel Raoul BUŞE Date of approval in the department: Department head, Conf. Dr. Nicoleta ŞTEFU e-mail address: secretariat@e-uvt.ro Website: www.uvt.ro